Pre-registration of latent fingerprints based on orientation field

نویسندگان

  • Ram P. Krish
  • Julian Fiérrez
  • Daniel Ramos-Castro
  • Javier Ortega-Garcia
  • Josef Bigün
چکیده

In this study, the authors present a hierarchical algorithm to register a partial fingerprint against a full fingerprint using only the orientation fields. In the first level, they shortlist possible locations for registering the partial fingerprint in the full fingerprint using a normalised correlation measure, taking various rotations into account. As a second level, on those candidate locations, they calculate three other similarity measures. They then perform score fusion for all the estimated similarity scores to locate the final registration. By registering a partial fingerprint against a full fingerprint, they can reduce the search space of the minutiae set in the full fingerprint, thereby improving the result of partial fingerprint identification, particularly for poor quality latent fingerprints. They report the rank identification improvements of two minutiae-based automated fingerprint identification systems on the National Institute of Standards and Technology (NIST)-Special Database 27 database when they use the authors hierarchical registration as a pre-alignment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Registration of Fingerprints by Complex Filtering and by 1D Projections of Orientation Images

When selecting a registration method for fingerprints, the choice is often between a minutiae based or an orientation field based registration method. In selecting a combination of both methods, instead of selecting one of the methods, we obtain a one modality multi-expert registration system. If the combined methods are based on different features in the fingerprint, e.g. the minutiae points r...

متن کامل

On Latent Fingerprint Enhancement

Automatic feature extraction in latent fingerprints is a challenging problem due to poor quality of most latents, such as unclear ridge structures, overlapped lines and letters, and overlapped fingerprints. We proposed a latent fingerprint enhancement algorithm which requires manually marked region of interest (ROI) and singular points. The core of the proposed enhancement algorithm is a novel ...

متن کامل

Fingerprint Recognition: Models and Applications

Fingerprint Recognition: Models and Applications By Soweon Yoon Fingerprint recognition has been successfully used in law enforcement and forensics to identify suspects and victims for over a century. Recent advances in automated fingerprint identification systems (AFIS), coupled with the growing need for reliable person recognition, have resulted in an increased deployment of AFIS in broad app...

متن کامل

Separation of Overlapped Fingerprints for Forensic Applications

Normally, fingerprint images contain a single fingerprint or a set of non overlapped fingerprints. There may be situations where overlapped fingerprint can be obtained. It can be frequently encountered in the latent fingerprint lifted from crime scenes. It is essential to separate those overlapped fingerprint into its component fingerprints. The challenging work in separating overlapped fingerp...

متن کامل

Experimental Assessment on Latent Fingerprint Matching Using Affine Transformation

In forensics latent fingerprint identification is critical importance to identifying suspects: latent fingerprints are invisible fingerprint impressions left by fingers on surfaces of objects. The proposed algorithm uses a robust alignment algorithm (mixture contour and Orientation based Descriptor) to align fingerprints and to get the similarity score between fingerprints by considering minuti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IET Biometrics

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015